Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims. We have investigated the lensing event KMT-2024-BLG-0404. The light curve of the event exhibited a complex structure with multiple distinct features, including two prominent caustic spikes, two cusp bumps, and a brief discontinuous feature between the caustic spikes. While a binary-lens model captured the general anomaly pattern, it could not account for a discontinuous anomaly feature between the two caustic spikes. Methods. To explore the origin of the unexplained feature, we conducted more advanced modeling beyond the standard binary-lens framework. This investigation demonstrated that the previously unexplained anomaly was resolved by introducing an additional lens component with planetary mass. Results. The estimated masses of the lens components areMp= 17.3−8.8+25.5MEfor the planet, andMh,A= 0.090−0.046+0.133M⊙andMh,B= 0.026−0.013+0.038M⊙for the binary host stars. Based on these mass estimates, the lens system is identified as a planetary system where a Uranus-mass planet orbits a binary consisting of a late M dwarf and a brown dwarf. The distance to the planetary system is estimated to beDL= 7.21−0.97+0.93kpc, with an 82% probability that it resides in the Galactic bulge. This discovery represents the ninth planetary system found through microlensing with a planet orbiting a binary host. Notably, it is the first case in which the host consists of both a star and a brown dwarf.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Aims. The light curves of the microlensing events MOA-2022-BLG-091 and KMT-2024-BLG-1209 exhibit anomalies with very similar features. These anomalies appear near the peaks of the light curves, where the magnifications are moderately high, and are distinguished by weak caustic-crossing features with minimal distortion while the source remains inside the caustic. To achieve a deeper understanding of these anomalies, we conducted a comprehensive analysis of the lensing events. Methods. We carried out binary-lens modeling with a thorough exploration of the parameter space. This analysis revealed that the anomalies in both events are of planetary origin, although their exact interpretation is complicated by different types of degeneracy. In the case of MOA-2022-BLG-091, the main difficulty in the interpretation of the anomaly arises from a newly identified degeneracy related to the uncertain angle at which the source trajectory intersects the planet–host axis. For KMT-2024-BLG-1209, the interpretation is affected by the previously known inner-outer degeneracy, which leads to ambiguity between solutions in which the source passes through either the inner or outer caustic region relative to the planet host. Results. Bayesian analysis indicates that the planets in both lens systems are giant planets with masses about two to four times that of Jupiter, orbiting early K-type main-sequence stars. Both systems are likely located in the Galactic disk at a distance of around 4 kiloparsecs. The degeneracy in KMT-2024-BLG-1209 is challenging to resolve because it stems from intrinsic similarities in the caustic structures of the degenerate solutions. In contrast, the degeneracy in MOA-2022-BLG-091, which occurs by chance rather than from inherent characteristics, is expected to be resolved by the future space based Roman RGES microlensing survey.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Aims. Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models. Methods. From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve. Results. From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35MJ. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38M⊙and 0.56−0.28+0.30M⊙. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system.more » « less
-
Abstract We report the analysis of four unambiguous planets and one possible planet from the subprime fields (Γ ≤ 1 hr−1) of the 2017 Korea Microlensing Telescope Network (KMTNet) microlensing survey, to complete the KMTNet AnomalyFinder planetary sample for the 2017 subprime fields. They are KMT-2017-BLG-0849, KMT-2017-BLG-1057, OGLE-2017-BLG-0364, and KMT-2017-BLG-2331 (unambiguous), as well as KMT-2017-BLG-0958 (possible). For the four unambiguous planets, the mean planet–host mass ratios,q, are (1.0, 1.2, 4.6, 13) × 10−4, the median planetary masses are (6.4, 24, 76, 171)M⊕, and the median host masses are (0.19, 0.57, 0.49, 0.40)M⊙, respectively, found from a Bayesian analysis. We have completed the Anomaly Finder planetary sample from the first 4 yr of KMTNet data (2016–2019), with 112 unambiguous planets in total, which nearly tripled the microlensing planetary sample. The “sub-Saturn desert” ( ) found in the 2018 and 2019 KMTNet samples is confirmed by the 2016 and 2017 KMTNet samples.more » « less
-
Abstract In this work, we continue to apply the updated KMTNet tender-love care photometric pipeline to historical microlensing events. We apply the pipeline to a subsample of events from the KMTNet database, which we refer to as the giant source sample. Leveraging the improved photometric data, we conduct a systematic search for anomalies within this sample. The search successfully uncovers four new planet-like anomalies and recovers two previously known planetary signals. After detailed analysis, two of the newly discovered anomalies are confirmed as clear planets: KMT-2019-BLG-0578 and KMT-2021-BLG-0736. Their planet-to-host mass ratios areq ∼ 4 × 10−3andq ∼ 1 × 10−4, respectively. Another event, OGLE-2018-BLG-0421 (KMT-2018-BLG-0831), remains ambiguous. Both a stellar companion and a giant planet in the lens system could potentially explain the observed anomaly. The anomaly signal of the last event, MOA-2022-BLG-038 (KMT-2022-BLG-2342), is attributed to an extra source star. Within this sample, our procedure doubles the number of confirmed planets, demonstrating a significant enhancement in the survey sensitivity.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Aims. We investigate the 2023 season data from high-cadence microlensing surveys with the aim of detecting partially covered shortterm signals and revealing their underlying astrophysical origins. Through this analysis, we ascertain that the signals observed in the lensing events KMT-2023-BLG-0416, KMT-2023-BLG-1454, and KMT-2023-BLG-1642 are of planetary origin. Methods. Considering the potential degeneracy caused by the partial coverage of signals, we thoroughly investigate the lensing-parameter plane. In the case of KMT-2023-BLG-0416, we have identified two solution sets, one with a planet-to-host mass ratio ofq~ 10−2and the other withq~ 6 × 10−5, within each of which there are two local solutions emerging due to the inner-outer degeneracy. For KMT-2023-BLG-1454, we discern four local solutions featuring mass ratios ofq~ (1.7−4.3) × 10−3. When it comes to KMT-2023-BLG-1642, we identified two locals withq~ (6 − 10) × 10−3resulting from the inner-outer degeneracy. Results. We estimate the physical lens parameters by conducting Bayesian analyses based on the event time scale and Einstein radius. For KMT-2023-BLG-0416L, the host mass is ~0.6M⊙, and the planet mass is ~(6.1−6.7)MJaccording to one set of solutions and ~0.04MJaccording to the other set of solutions. KMT-2023-BLG-1454Lb has a mass roughly half that of Jupiter, while KMT-2023-BLG-1646Lb has a mass in the range of between 1.1 to 1.3 times that of Jupiter, classifying them both as giant planets orbiting mid M-dwarf host stars with masses ranging from 0.13 to 0.17 solar masses.more » « less
-
We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.more » « less
-
Aims.The United Kingdom Infrared Telescope (UKIRT) microlensing survey was conducted over four years, from 2016 to 2019, with the goal of serving as a precursor to future near-infrared microlensing surveys. Focusing on stars in the Galactic center and utilizing near-infrared passbands, the survey identified approximately one thousand microlensing events, 27 of which displayed anomalies in their light curves. This paper presents an analysis of these anomalous events, aiming to uncover the underlying causes of the observed anomalies. Methods.The events were analyzed under various configurations, considering the potential binarity of both the lens and the source. For 11 events that were additionally observed by other optical microlensing surveys, including those conducted by the OGLE, KMTNet, and MOA collaborations, we incorporated their data into our analysis. Results.Among the reported anomalous events, we revealed the nature of 24 events except for three events, in which one was likely to be a transient variable, and two were difficult to accurately characterize their nature due to the limitations of the available data. We confirmed the binary lens nature of the anomalies in 22 events. Among these, we verified the earlier discovery that the companion in the binary lens system UKIRT11L is a planetary object. Accurately describing the anomaly in UKIRT21 required a model that accounted for the binarity of both the lens and the source. For two events UKIRT01 and UKIRT17, the anomalies could be interpreted using either a binary-source or a binary-lens model. For the UKIRT05, it was found that accounting for higher-order effects induced by the orbit al motions of both Earth and the binary lens was crucial. With the measured microlensing parallax togeter with the angular Einstein radius, the component masses of the UKIRT05 binary lens were determined to beM1= (1.05 ± 0.20)M⊙,M2= (0.36 ± 0.07)M⊙, and the distance to the lens was found to beDL= (3.11 ± 0.40) kpc.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover ∼13 deg2. We report three unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the three unambiguous planets, OGLE-2017-BLG-1275, is the first AnomalyFinder discovery that has a Spitzer microlens parallax measurement,πE≃ 0.045 ± 0.015, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratiosqand normalized projected separationssof , (−2.06, 0.63/1.09), (−2.10, 1.04), and (−2.86, 0.72). Combined with previously published events, the 2017 prime fields contain 11 unambiguous planets with well-measuredqand one very likely candidate, of which three are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties inq.more » « less
-
Abstract In the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of ∼950 microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a subsample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes, and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper-motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of , , and , respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the timescale (tE) versus parallax (πE) diagram to derive constraints on the population of lenses in general and massive remnants in particular.more » « less
An official website of the United States government
